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Abstract

Self-avoiding random surfaces on a cubic lattice are studied by
extensive Monte Carlo sampling. The surfaces have empty boundary
and the topology of a 2-sphere. An oct-tree data-structure allows to
obtain good statistics for surfaces whose plaquette number is almost an
order of magnitude greater than in previous investigations. Maximum
likelihood determinations of the critical plaquette fugacity, u=', and
entropic exponent, 8, can be extrapolated to the estimates: p=---+£
--,and @ = ---+ ... The linear regression estimate for the radius of
gyration exponent is v = --- 4 ---. The results support a location of
the problem within the branched polymers universality class.

I. Introduction

Both lattice and continuum models of random surfaces (RS) have attracted
much attention in the recent literature. Among the many motivations for this
interest are connections with lattice gauge theories [BDI75,DI79] and possible
applications to problems in condensed matter physics. RS are geometrical
generalizations of random walks, which play a very fundamental role in fields
like polymer physics. Indeed, from the onset of studies of RS, there has been
a natural tendency to treat their statistics within the framework of schemes
directly inspired by those used in polymer physics. On the other hand, RS
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models are expected to display a much richer variety of universality classes
than their random walk counterparts, so that application of schemes used for
random walk requires some caution.

At present, our understanding of RS models in finite dimensions relies
on numerical investigations, mostly using Monte Carlo methods. As we’ve
already mentioned, analysis of results is more delicate than for random walks.
Another barrier to carrying out such investigations is the need to store a very
large amount of information in order to describe the configuration of RS. This
information is much greater than that normally needed in walk problems of
comparable size. Thus, RS simulation is another field in which substantial
progress can be made only if efficient data-structures and robust numerical
methods are introduced in such a way as to allow sufficiently fast and accurate
computations.

In this study we consider a model of RS on a 3-dimensional cubic lattice,
i.e. the RS is constructed by gluing together elementary square plaquettes
of the lattice according to the following prescription: A surface S is given
by a set of |S| distinct plaquettes. Each plaquette is used only once to build
S, and at each of its four edges, it is connected to one and only one other
plaquette. A self-avoidance constraint is understood in the sense that not
only plaquettes but also their edges (which coincide with the bonds of the
3-d lattice) enter at most once in S. Corner overlaps are still allowed. We
must also specify the boundary conditions and the topology. Our surfaces
are closed, so that the boundary is fixed but null. It is known [Sokal] that
convergence with fixed boundary conditions is much longer than with free
boundaries. We assume the topology to be that of a 2-sphere (i.e. genus 0),
thereby excluding handles. An excellent review of this problem is given in
[G188].

There are two quantities of primary interest to us: N(n), the number of
possible surface configurations with |S| = n; and, R(n) the radius of gyration
with respect to the centroid of each configuration, averaged over all N(n)
configurations with |S| = n. In counting, we assume that each configuration
is equivalent to all others obtained by lattice translations. Thus, by “surface
configuration” we imply an equivalence class of configurations which coincide
under such translations. On the basis of heuristic arguments, the following
asymptotic behaviors are expected at large n:

Nin) ~ 0~y (1)



and

R(n) ~n” (2)

The existence of lim In N/n could be established by generalizing a theorem of
Hammersley [Ha61] on self-avoiding walks to self-avoiding surfaces [DFJ83].
The exponent # has an entropic connotation, while v can be naturally inter-
preted as the reciprocal of the fractal, or capacity dimension for surfaces.

Very little exact information is available about self-avoiding RS (SARS)
models such as that described above. In particular, the determination of 8,
p and v is essentially an open question. A property of self-avoiding surface
modes is that they most probably collapse into non-interacting branched
polymers in the limit of high dimensionality, implying v = 1/4 and 0 =
5/2 [DFJ84]. Early real-space renormalization-group calculations and Flory
arguments, in the style of polymer statistics, suggested that the exponent v
of SARS at low dimensionality could be distinct from that of self-avoiding
branched polymers, although the two problems would share the same upper
critical dimension [MS84].

Sterling and Greensite [SG83] performed the first Monte Carlo calcula-
tion in 3-d for a SARS. They considered the same model described here and,
working in a grand canonical ensemble, estimated § = 0.5+0.05, which would
seem to exclude, at least for 6, the possibility of § = 3/2 and v = 1/2, the
values expected for branched polymers in 3-d [PS81]. On the other hand,
in an exact enumeration up to 10 plaquettes, Redner [Re85] found values of
§ and v which seemed compatible with those of branched polymers. (He,
however, did not apply restrictions on the type of boundaries nor on the
topology.) Further evidence for § = 3/2 and v = 1/2 was obtained by Glaus
and Einstein [GE87,GI88] with extensive Monte Carlo simulations, which
improved on the work of [SG83]. Concurrently, Karowski [Ka86] presented
Monte Carlo results for our model suggesting that the exponent v could in-
deed be distinct from 1/2 and instead have a value of the type first suggested
by Maritan and Stella [MS84]. Although Karowski’s approach seems less sys-
tematic and accurate than Glaus’s, he did test a domain of larger n, closer to
the asymptotic limit. His results thus cast some doubt on the identification
of the model with branched polymers.

Because of this somewhat unsettled situation, we decided to undertake
a new Monte Carlo investigation of the model, based on a more efficient
computational approach than previous ones. This paper presents the results



of such a study, and includes a thorough discussion of the computational
strategy, with particular emphasis on the implementation of an oct-tree data-
structure, which is unfamiliar to most physicists. To our knowledge, oct-
trees have not yet been applied to this sort of problem, and we hope that
our application of them will convince readers of the utility of sparse data-
structures in complex problems of computational physics.

The rest of this paper is organized as follows: In the second section we out-
line our Monte Carlo method and illustrate how the oct-tree data-structure
works. When appropriate, we also draw comparisons with the methods used
in previous work. Section 3 is devoted to the presentation and analysis of
our results. In the last section, we give our conclusions.

II. Monte Carlo Algorithm and Oct-tree Data-structure

Our Monte Carlo procedure generates SARS on a cubic lattice in a grand
canonical ensemble at fixed plaquette fugacity #. Thus, the statistics of the
generated surfaces can be derived from a partition function of the form

Z(B) = ZS: [S[p1 oc 370 N(n) 8" (3)

where we have chosen @ = 2 or 3 in this study. As in refs [GE87,GI88],
our algorithm is a refinement of the Monte Carlo procedure first introduced
by Sterling and Greensite. Given a surface S, an attempt to modify it is
made by searching for elementary cubes of the lattice having at least one
face belonging to S. If such a cube is found, we reverse the status of each
of its 6 faces, regarding whether or not each belongs to the surface S. This
process leads to a new surface S, which can be accepted only if it turns out
to obey the geometrical and topological constraints imposed on the model.
If the constraints are satisfied, then the acceptance of the new surface is
subject to satisfaction of the usual Metropolis condition consistent with the
grand-canonical fugacity 4 in the partition function.

In [SG] the search for cubes was made by sweeping through all those
contained in a 10 x 10 x 10 box. In subsequent studies [G,EG], the search
was restricted to the set of cubes with at least one face belonging to the
surface. In this way, surfaces fitting in a 20 x 20 x 20 box could be generated.
This box still imposes a rather severe finite-size limitation. These approaches
are inefficient in that a well-defined location in computer memory must be
reserved for each cube in the box, whether or not it actually touches the
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surface. We can, however, store information about the surface configuration
using a sparse data-structure, the oct-tree, in which memory is only used for
those cubes which actually touch the surface, while all others can be ignored.
This procedure allows us to escape the restriction that surfaces fit in a finite
box.

Before describing the data-structure explicitly, we comment on the way
in which our grand-canonical weight in the partition function (3) is actually
obtained. In [G,EG], each move of the surface was made by selecting ran-
domly among the cubes having faces in common with it. If we denote by ||.5]]
the number of such cubes for a surface S, the random choice implies a factor
1/||S]| in the transition rate from S to any configuration S" accessible from
S. Detailed balance then clearly implies that the grand canonical weight
for a surface S should contain a factor ||S||. Here we prefer to proceed in
a way such that |S|, rather than ||.S]| factors appear in the grand canonical
weight, as anticipated in eqn. (3). Thus, in our case the first random choice
is made within the set of all |S| elementary plaquettes of S. We then choose
one of the two cubes sharing this plaquette and perform the usual inversion
operation on it. Since this process allows the same cube to be chosen with
more than one plaquette choice, we must unbias the procedure so that each
distinct possible modification of S has an equal a prior: probability. Again,
calling S" the surface produced by inversion of the chosen cube, the move
S — S actually has probability xgg /[S| in the biased procedure, where
Kgg 1s the number of different plaquettes in S the choice of which can lead
to the selection of the cube in question.

We can get rid of this bias if we slow down the rate by a factor of 1/kgs
by the usual Metropolis procedure of stopping the transition if a random
number chosen in [0, 1] is greater than 1/kgs/. In order to finally obtain the
weight in eqn. (3), we have to apply |S'|/(|S] + |S'|), one further slowing
down process.

In fact, our calculation inserts two filters. The first determined by the
ratio
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in case |S'| > |S| and otherwise,

Efs
|S17 4+ 157

In this way we get a transition rate for an allowed move S — S that is
of the form:

[ AS S as EISE |S ] s |9
S8 = 0 )1 , A
w(§ =5 { A(S, S5 it 18] < |S] (4)

where A(S,S") = A(S',S). Detailed balance then clearly implies that the
equilibrium probability of a surface |.S| is proportional to |S|”8!1%!, consistent
with eq. (3). The ability to vary « is important because by increasing « we
can boost the percentage of large surfaces produced in a Monte Carlo run at
any particular given subcritical 8 < p=1 = ..

In our runs, the probability of occurrence of a surface with |S| = n is

nxﬂn

PISI=m = = enwa o)
Unlike the simulations reported in [DFJ84,GE87.GI88], we do not keep one
plaquette of the surface fixed. In those simulations, the fixed plaquette served
to increase x effectively by one. Another increase of one compared to [SG83]
was achieved in refs. [GE87,GI88] by sweeping only over the surface rather
than the whole box. (Note, however, that we do not allow the last remaining
cube of a surface to vanish, so that we always have n > 6).

As has been mentioned, we have been able to perform simulations that
generate very large configurations, because we use a sparse data-structure,
the oct-tree. Oct-trees are a data-structure for storing information about 3-d
space. Briefly stated, the oct-tree data-structure represents a cube of arbi-
trary size. The same amount of computer memory can represent a physically
small cube as well as a large one. Part of each cube’s data-structure denotes
whether the cube is empty, full, or partially full. If the cube is empty or full,
there is nothing else to describe. If the cube is partially full, it is divided into
eight sub-cubes (figure [ ]), hence the term oct. Each of these may in turn be
either empty, full, or partially full. This description is continued recursively
until all partially full octs are described in terms of empty or full octs, or



until some desired degree of resolution has been reached. This hierarchical
representation of a volume is an oct-tree. The first oct in the tree is called
the oct-root. For the purposes of our work, the term cube refers to a unit
cube of the lattice (i.e. an oct of the smallest resolution). An example of a
four cube volume is shown in figure [ |.

The present use of oct-trees is quite different from the typical one. The
ordinary implementation starts with a single oct that represents the total
working volume. The oct is divided as objects of importance are discovered
in the workspace. This is carried out recursively down to whatever resolution
is required. Our representation task is similar, but instead of splitting octs to
get more resolution, we double the linear dimension of octs when our volume
grows. The finest level of resolution is fixed at the unit cube throughout
the calculation, but the working volume is not fixed. When a cube appears
outside of the oct-tree, we create a new root for the tree that is large enough
for the new object. The old root oct becomes one of the children of the
new root oct. When an oct’s eighth child is filled, the oct is marked as full
and all storage previously used to store the children is released. Each parent
notices when its last child has become full and executes the same procedure.
This recursive process keeps the actual amount of storage in the oct-tree to
a minimum. An inverse process occurs when an oct’s only child is deleted.
The oct is marked empty and space reserved for children is released. This
is also executed recursively, as each parent notices when its last child has
become empty and releases space no longer used.

Functionally, all an oct consists of is pointers to children. For application
to SARS, we have augmented this with a parent pointer, a single coordinate
to identify one corner of the oct in space, and a count of the number of
children in the current oct. We have also augmented the oct structure so
that it stores any faces that lie on the surface. This is easily done with a
six-element bit map for the six possible faces on each cube.

One procedure is of special interest because it is the most heavily used and
illustrates a particularly nice feature of the oct-tree in physical simulations.
oct-find is used to find the oct at a given coordinate. Since the height
of the oct tree is logarithmic with the size of the lattice, searching is very
efficient. Starting at the root, the procedure compares the coordinate to the
midpoint in each direction. With three comparisons, the appropriate sub-
oct is located within which the x,y, z coordinate is guaranteed to lay. This
process is recursively repeated until we arrive at the correct cube. As we



step down through the oct tree, the linear dimension of the working volume
is halved in each direction. Thus, the search time is

O(3logs(n)) = O(logy(n)) (6)

- a binary search. Thus, if it takes k steps to execute oct-find in a 2 x 2 x 2
lattice, it takes 5k steps to do so in a 32 x 32 x 32 lattice, and only 20k steps
ina 1,048,576 x 1,048,576 x 1,048,576 lattice.

III. Monte Carlo Results and Their Analysis

We performed extensive Monte Carlo runs on a Convex C120 computer,
generating surfaces consistent with the equilibrium partition function (3)
with # = 2 and « = 3. Following [GE87], we chose the value 3 = 0.56. This
is expected to be slightly below the actual critical value of the model, p™*,
which for [GE87] was 0.577. It is crucial that we have 8 < (. to prevent
the surface from growing without bound. In earlier work [SG83], a smaller
value of 3 (0.531) was needed because of the stringent finite-size limitation.
Karowski[[Ka86] examined many values of § between 0.53 and 0.54.

According to eqn. (2.3), at fixed value of 5 the Monte Carlo-generated
distribution of surface areas should peak at larger values of n as = increases.
This behavior is clear from the plots of distributions from our runs of 10?
Monte Carlo steps (MCS) for « = 2 and 3. Thus, runs with = 3 have the
advantage of sampling a relatively higher percentage of surfaces with high
|S|. Interestingly, this is also the disadvantage of using larger z: since the
mean configuration size is larger, autocorrelation is a more serious problem.
We found that 20,000 MC steps between samples were needed. It is also
apparent from Figs. 1 that for relatively small n (less than about 50), there
are actually two distributions: there are far more surfaces with areas n that
are odd multiples of 2 than even multiples (and in fact none with |S| = 8
or 12). This observation is related to the fact that not every value of || is
possible (e.g. only 6, 10, and 14 can occur for small configurations). This is
reflected in the bimodal values in the plots of effective exponents vs. 1/nmin
discussed below.

Using the maximum likelihood method, we analyzed the distributions
depicted in Figs. 1 to extract estimates for § and p. Application of this
method to self-avoiding walks is discussed extensively by [BS85]. It was used
by [GE87,GI88] for our SARS problem. In the simplest mode, one assumes



the relation (1) is strictly satisfied for n > nmyin. Pursuant to this assumption,
one observes the “experimental” expectation values of the two quantities

0:(5) = [510(]5] = nmin) (7)

and

02(S) = In(|S)O(|S] = nmin), (8)
where O is the Heaviside unit step function. The maximum likelihood esti-
mates of v and # are then obtained as solutions of the pair of equations

< Ol >0bs:< Ol >th (9)

< 02 >0bs:< 02 >th (10)

where the left-hand sides are the computed Monte Carlo expectation values,
while on the right-hand sides we insert the theoretical expectation values
based on eqn. (1), assumed valid for n > npin

2> tmin Or(n)n~"p" 3"
ZZOanin n—ﬁlunﬂn

< O >y=

(11)

The numerical solution of this nonlinear system requires great care. For one
thing, the computed Monte Carlo expectation values require summing over
many terms of widely differing magnitudes. We found that to avoid roundoff
and truncation difficulties, it was necessary to use all terms on the left-hand
side of the equations for which simulation data were taken, and on the right-
hand side, use 1000 terms and sort the terms before summing, and compute
the sums in double precision. A more serious difficulty is presented by the
nonlinear equations themselves. Let F'(u,0) be the difference between the
right and left-hand sides of Equations (9) and (10). Figure xx is a plot of || F|
as a function of p and #. The flat “trough” running roughly north-east to
south-west contains the minimum of || F'||. Along this trough, large changes
in (y,0) cause only small changes in ||F|| so that the minimum is difficult
to locate. (This behavior is typical of the systems of equations arising form
the use of maximum likelihood for exponential families.) We carried out this
calculation in double precision, using the NAG routine SNSQSE.

We obtained estimates of § and p for both * = 2 and = = 3, for many
different values of ny,. In principle, the higher ny,, the closer the result



should be to the correct asymptotic value. Indeed, corrections of the order
of 1/nmin can be expected, as well as possibly more dominant corrections to
scaling arising from deviations from the asymptotic behavior of relation (1).

In Table 1, we report our # and p determinations. We see that for values
of N up to 70, the determinations are reasonably consistent. For higher
values of ny,, poor statistics leads to more erratic behavior. Moreover, we
see that the exponents for ny,;, an odd multiple of two may differ from those
with nmn an even multiple. We did a weighted least squares fit of In(data)
linearized with weights data/o, where the Fisher information matrix gives
the statistical o of each maximum likelihood data entry. Extrapolating over
the range of good statistics, as a function of 1/nyin = 1/18 to 1/nmin = 0 we
find, consistent with our assumptions,

(11,0) = (1.73,1.495)

There is, of course, additional systematic uncertainty due to the unknown
strength of corrections to scaling. We did not attempt to estimate these
corrections, but note from [GE87] that they should not change the general
behavior in terms of 1 /nmi. Since we have been able to go to much larger nyin
than previous workers, our values are presumably more nearly asymptotic.

The exponent v was more simply estimated by a linear regression method.
Figs. 4 show our Monte Carlo results for the mean square radius of gyration,
R(n), of surfaces with [S| = n. Both for @ = 2 and = = 3, the log-log
plots become linear rapidly, indicating that a high degree of asymptoticity
has already been reached in both cases. The estimate of the asymptotic
slope was also done disregarding values for n < npy;, A least-squares fit gives
estimates of v of 0.504+xx and 0.512+ zx respectively. A final extrapolation
for v in the limit ny;, — oo gave: v = xx again an average of the results for
the two values of x.

IV. Concluding Remarks

The results discussed in Section I1I are obtained from statistics involving sur-
faces with areas nearly an order of magnitude larger than those considered
in refs. [GE87,GI88]. We could achieve this higher degree of asymptoticity
by removing the box constraint and by considering, in particular, the distri-
bution (2.1) with + = 3. Higher values of x, or 3’s closer to the estimated
B. would have enriched the sampling of high n, but at the price of inconve-
niences, such as longer correlation times. Our choice of § and of x seemed
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a reasonable compromise in view of our computational capabilities. Only
one set of calculations have been reported that involve larger surfaces than
ours[Ka86], and we seriously question the statistical significance of those re-
sults (cf. [GI88]). In [Ka86] determination of v was accomplished by using
very large surfaces generated with 3 close to the 3. of 0.531 previously de-
termined by [SG83], which is considerably lower than our estimate of 0.577
for .. Especially with such a small 3, the sampling of very large surfaces (n
near 5000) appears to us to be quite problematical.

Our estimates of v are clearly quite consistent with the value of Glaus
[GES87,GI88] and strongly corroborate the conjecture that our self-avoiding
surfaces indeed have the same exponent, v = 1/2, expected for branched
polymers in 3-d. The determination of § was subject to greater uncertainty;
the value is less decisively in the universality class of branched polymers, and
we feel that a definitive conclusion on this issue has unfortunately not yet
been reached, even by our extensive analysis. Nonetheless, we believe our
determination of § represents an advance over [GE87,GI88] in that we have
been able to include a substantially larger range of ny;, and, hence, could
explore separate extrapolations of values that are odd and even multiples of
2. The latter series was neglected in [GE87,GI188].

As already stressed by Glaus, an additional important indicator of the
nature of SARS in the critical limit is the surface-to-volume ratio < [S|/V >.
Our data for this ratio seem to extrapolate, as ny;, — oo, to a value close
to 3.8. The fact that this ratio remains different from zero indicates that
our surfaces enclose a region with fractal dimension not higher than 1/v.
The fact that the ratio is close to 4 is an indication that ramified tubular
configurations with tubes of minimal size presumably dominate in the RS
statistics. If each elementary cube on average gets about four plaquettes, the
critical activity for each cube is a number close to 10. It is interesting to notice
that the estimated critical bond fugacity for branching trees (without loops)
on a hypercubic lattice is about 9.53 [GS82]. Even if a strict coincidence of
the two numbers is not to be expected, it seems to us that agreement in the
order of magnitude also supports the possible identification.

Previous studies based on exact enumeration [R85] and Monte Carlo
[G186,G188] gave evidence for exponents (at least v) very close to those we
found in our model. In particular, Redner found v close to 1/2 in the case
of surfaces with unrestricted boundaries and topologies. We believe that
this apparent, and somewhat unexpected, independence of critical behavior
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on the genus of the surfaces favors the idea that these surfaces are all in
the universality class of branched polymers. It is indeed known [GS82] that
branching trees without loops have the same critical behavior as lattice ani-
mals, for which loops are allowed. In view of the above picture of our surfaces
as thinly ramified objects, the loops of lattice animals could correspond to
the possibility of forming handles, and thus of changing the genus of our
surfaces.

The results of this paper, particularly the strong indication that SARS
realize the critical behavior of branched polymers in the scaling limit, leads
to an obvious question: What are the requirements of a SARS model in
order that it represents a genuine fractal surface in the scaling limit rather
than a linear, even if highly ramified, object? We think that one way to
achieve different critical behavior is to enrich the model by allowing a local
interaction with an effect analogous to an extrinsic curvature dependence in
the continuum. For example, an appropriate fugacity could be introduced to
control the number of links joining plaquettes not lying in the same plane. If
coplanar adjoining plaquettes are sufficiently favored over plaquettes joining
at right angles, it seems likely that a more compact structure than branched
polymers should appear in the simulations. Thus, one could possibly observe
interesting multicritical phenomena in this generalized model near the tran-
sition between SARS behavior as the fugacity is varied. The study of such
multicritical phenomena might well reveal new universality classes for the
generalized model.

A model, in which an effect similar to that of the above local interaction
is provided by the inclusion of Ising vacancies, has been recently discussed

in ref. [MSS90].
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